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General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems
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An asymptotic method for finding instabilities of arbitrary d-dimensional large-amplitude patterns in a wide
class of reaction-diffusion systems is presented. The complete stability analysis of two- and three-dimensional
localized patterns is carried out. It is shown that in the considered class of systems the criteria for different
types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical
constants of order 1. The analysis performed explains the self-organization scenarios observed in the recent
experiments and numerical simulations of some concrete reaction-diffusion systems.
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I. INTRODUCTION

In the last two decades the problem of pattern formation
and self-organization has become a paradigm of modern sci-
ence [1-8]. Patterns are observed in a wide variety of physi-
cal systems, such as gas and electron-hole plasmas; various
semiconductor, superconductor, and gas-discharge structures;
some ferroelectric, magnetic, and optical media; systems
with uniformly generated combustion material (see [5-7,9]
and references therein). Pattern formation and self-
organization are most conspicuous in chemical and biologi-
cal systems (see [1-5] and references therein). As a rule, all
these systems are extremely complicated. In order to de-
scribe pattern formation phenomena in them a number of
simplifications are made. The majority of the simplified
models reduce to a pair of reaction-diffusion equations of the
activator-inhibitor type [5-7]:
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where 6 and # are the distributions of the activator and the
inhibitor, respectively; ¢(6,7,A) and Q(6,n,A) are certain
nonlinear functions; [/ and L are the characteristic length
scales, and 74 and 7, are the characteristic time scales of 6
and 7, respectively; and A is the control parameter. The
well-known models of certain autocatalytic reactions, such
as the Brusselator [1], the two-component version of the Or-
egonator [2] and the Gray-Scott [10] models, the classical
model of morphogenesis proposed by Gierer and Meinhardt
[11], and the piecewise-linear [12,13] and FitzHugh-Nagumo
[14,15] models describing the propagation of impulses in the
nerve tissue are special cases of Egs. (1) and (2). These mod-
els are most widely used in the analytical investigations of
different types of patterns [11-26].

The main self-organization phenomenon in the considered
systems is spontaneous transformation of one type of pattern
to another as certain parameters of the system are varied.
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Self-organization scenarios become extremely diverse in
two- and three-dimensional systems. In this situation the
most interesting are the spoutaneous transformations of
simple patterns, especially localized steady patterns [auto-
solitons (AS’s)], into much more complicated ones. Many
different types of these transformations were recently ob-
served in experiments with semiconductor and gas-discharge
structures [27-29], chemical reaction-diffusion systems [30—
32], and in numerical simulations [33—-35]. At the same time,
a general theory of such transformations is absent.

The general asymptotic method of constructing solutions
in the form of large-amplitude localized, periodic, and more
complex one-dimensional patterns, and the qualitative analy-
sis of their stability in the systems described by Egs. (1) and
(2), were developed by Kerner and Osipov [5,6,36-42]. A
more formal and mathematically rigorous analysis of one-
dimensional patterns was carried out by Nishiura, Mimura,
and their co-authors [43—45]. Static, pulsating, and traveling
large-amplitude patterns in simple reaction-diffusion systems
have been studied in detail [13,16—-21,25,12,46].

In two and three dimensions Kerner and Osipov con-
structed asymptotic solutions for radially symmetric patterns,
and also analyzed the stability of one-dimensional patterns in
higher dimensions [5,6,39—42]. Ohta, Mimura, and Koba-
yashi developed an approach which allowed them to study
the stability of one-dimensional and radially symmetric pat-
terns in two- and three-dimensional versions of a simple
piecewise-linear model of a reaction-diffusion system [47].
This approach was further developed by Petrich and Gold-
stein, who applied it to a version of the FitzHugh-Nagumo
model [23].

In this paper we develop a systematic procedure to find
the bifurcation points of an arbitrary d-dimensional pattern.
Using this procedure, we analyze the stability of the major
types of patterns in arbitrary dimensions. On the basis of this
analysis, we draw conclusions about possible scenarios of
the transformations of patterns.

Our paper is organized as follows. In Sec. II we general-
ize the method of constructing the asymptotic solution for
one-dimensional and radially symmetric patterns developed
in Refs. [5,6,36—42] to the case of arbitrary d-dimensional

3101 © 1996 The American Physical Society



3102 C. B. MURATOV AND V. V. OSIPOV 53

n = =0
Q=0 q
n, AN \
TIh
N,

FIG. 1. Qualitative form of the nullclines of Egs. (3) and (4).

patterns. In Sec. III we present the derivation of the general
dispersion relation governing the stability of an arbitrary pat-
tern. In Sec. IV we apply the obtained results to one-
dimensional AS’s in higher dimensions. In Sec. V we analyze
the instabilities of the spherically symmetric AS in three di-
mensions, and the cylindrically symmetric AS in two and
three dimensions. In Sec. VI we summarize the results ob-
tained and discuss their implications for the evolution of pat-
terns and also give comparisons with the experimental and
numerical data.

II. ASYMPTOTIC SOLUTIONS FOR ARBITRARY
d-DIMENSIONAL PATTERNS

If we choose L and 7, as the units of length and time, we
can write Egs. (1) and (2) as

00
a—=€e’A0—q(6,7,A), (3)
at
97
—&7=A77“Q(0,7],A)s (4)

where e=1/L and =174/, are the ratios of the character-
istic lengths and times of the activator and the inhibitor, re-
spectively. The boundary conditions for Egs. (3) and (4) may
be neutral or periodic.

Kerner and Osipov developed a qualitative theory of
large-amplitude pattern in reaction-diffusion systems [36—
40] (for a comprehensive review on the subject see Refs.
[5-7]). They showed that the overall type of patterns is de-
termined by the values of € and «, and the form of the
nullcline of Eq. (3), that is, the dependence 7(6) implicitly
determined by the equation g( 8, ,A) =0 for a fixed value of
A. For many systems where patterns may form this nullcline
is N or inverted N (Fig. 1).

According to the general qualitative theory [5,6], when
€<1 and a>1, only static patterns may form in the system;
when @<<1 and €>1 only traveling patterns may form; and

S

FIG. 2. “Hot” and ‘“‘cold” regions forming a pattern. The walls
of the pattern are localized in the region of order € around .7 .

when both e<1 and a<%1, all types of patterns — static,
traveling, and pulsating — may form.

From the mathematical point of view the fact that 6 is the
activator means that in some range of the system’s param-
eters qu<0. In N systems this condition is satisfied for
0= 0= 6} (see Fig. 1). The fact that 7 is the inhibitor means
that the following conditions hold [5,6]:

q,25<0, 5)

and in the whole range of the system’s parameters the de-
rivatives Qp, Q7. and g/, do not change signs.

The systems we are considering have a unique homoge-
neous state 8= 6, and n= 7, , where 6, and 7, satisfy

q(0y,m,,A)=0, Q(6,,n,,A)=0. (6)

The homogeneous state is stable for A<<A,, where A, is the
point where 6,= 6, (see Fig. 1) [5,6].

As follows from the qualitative theory [5,6], the condition
€<<1 is necessary for the existence of AS’s and other large-
amplitude patterns in the considered reaction-diffusion sys-
tems. This fact allows one to use € as a natural small param-
eter and construct asymptotic solutions by means of the
singular perturbation theory [5,6,38,41]. Kerner and Osipov
have shown that as e—0, a pattern looks like a collection of
“hot” (high values of the activator) and “cold” (low values
of the activator) regions, separated by walls whose width is
of the order of € [5,6,37—40]. Thus, in the limit e—0 any
pattern in a d-dimensional N system can be described as a
(d— 1)-dimensional manifold .%, corresponding to the walls
of the pattern, which separates hot and cold regions ), and
Q _, respectively (Fig. 2). In general, . is a collection of an
(infinite) number of disconnected orientable submanifolds

0,>0,

1
Let us introduce the orthogonal curvilinear coordinates

around each submanifold .%;. For a point x let p; be the
distance from x to .”;, and the (d— 1)-dimensional coordi-
nate Si the projection to the submanifold p;=const. The
value of p; is assumed to be positive if x € (), and negative
otherwise. In the region of size ~ € around each .7 the
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variation of the inhibitor in the direction perpendicular to
#; and the variation of the activator along .%; are negligible
compared to the variation of the activator in the direction
perpendicular to .%%; [5,6,47]. Therefore, in the vicinity of
.7 the stationary Eq. (3) can be approximately written as

,d*0; do :
€ d—p2+6 Ki(Piafi)ch‘i'—“fZ(aiﬂ?s»A), (7

i

where K;(p;,&;) is the curvature of .%; at a point with the
curvilinear coordinates p; and &;. The boundary conditions
for 6; in Eq. (7) are

0,(—o)= i-l’ 0;(+o0)= ;3, 0,(0)= 229 ®
where 6, satisfy q(6.,, 7' ,A)=0, with 6',<6',<#',, and
7, satisfies the consistency condition

N do;\? b3 i
€ Ki(pi &)\ 7| dp;=| “q(0,7,,A)d6, (9)
— dp; o,

s

which follows from Eq. (7) if we multiply it by d6;/dp; and
integrate over p;. Of course, the infinities in Eq. (8) actually
mean that the boundary conditions for Eq. (7) should be
satisfied sufficiently far from .%”, namely, for |p|> €. Note
that in the equations above &; appears only as a parameter.

When K;— 0 the solution of Egs. (7)—(9) naturally trans-
forms to the one-dimensional sharp distribution (inner solu-
tion) [5,6,37,38]:

d*é,,
d p2

1

62

:q(osh(pi)’ s ’A)’ (10)

where 7, is a constant determined by the equation

Bf
f Y q(0,7,,A)d6=0, (11)

s1

and 6, are constants satisfying ¢g(6,7,,A)=0. The
boundary conditions for Eq. (10) are given by Eq. (8) with
n'=7, and 6',= 6, . Thus Egs. (7)—(9) describe the sharp
distributions of the activator around .”’; and take into account
the curvature of .7 .

Far from . the characteristic length of the activator varia-
tion is of order 1, so for |p;|> € the solution of Egs. (3) and
(4) is approximately given by the smooth distributions (outer
solutions) 6, (x) and 7., (x) defined for xe Q. , respec-
tively, which satisfy [5,6,37-40]

*

A7, =06, .75,.4),  q(6;,.75,,A)=0 (12)

for x € ()., respectively, with the boundary conditions

+ i aﬂ;m [977;m + i
Do (X1) = 775, o ap Oim(X:) =63,
0,,.(x;)= 6%, (13)

for any x; € .%; . Note that the shape of .%itself is determined
self-consistently via Eqs. (12) and (13).
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According to the singular perturbations theory [5,6], for
x € Q). the asymptotic solution of Egs. (3) and (4) is given
by the following composition of the sharp and smooth dis-
tributions:

0% (x)=65,(x)+ 2 [6:x)— 6151, 7 (x)=n5,(x),
(14)

where the plus sign goes with 923 and the minus sign goes
with 65, .

III. GENERAL METHOD FOR CALCULATING
INSTABILITIES

Let us consider the problem linearized about the static

solutions of Egs. (3) and (4) with respect to the fluctuations

80(x,t)=60(x)e'®, Sn(x,t)=6n(x)e’. (15)

The equations describing the fluctuations with the frequency
w will become

iawdf= €A 86— qy(6(x), 7(x))60—q,(8(x), 7(x))7,
(16)

iwén=A81—Qy(6(x),n(x))80— Q;(68(x), n(x))dn.
17

As was shown in the previous section, the solutions #(x) and
7(x) in the form of a static pattern, around which Egs. (3)
and (4) are linearized, are approximately given by Egs. (14)
for sufficiently small e.

According to the general qualitative theory [5,6], the sta-
bilization of a pattern occurs due to the damping effect of the
inhibitor on the fluctuations of the activator. It was shown
that only those fluctuations of the activator that are localized
in the walls of the pattern and lead to their small displace-
ments are dangerous for the pattern’s stability. To incorporate
this fact into our analysis, let us first consider the fluctuations
in the vicinity of .%; with a fixed distribution of the inhibitor.
Putting §%7=0 in Eq. (16), we may write

iawd6=—(H)+ AL+ €5;) 66, (18)
where
2
~0 2 d ,
H0:~E W+Q0(0.vh(pi), 77.\‘)’ (19)

IA{10=*621%+q19(0(x)9 ﬂ(x))_q’a(gsh(pz)’ ns)’ (20)

and the operator S ; is the part of the Laplacian acting on the
(d—1)-dimensional coordinates §&;, evaluated at .%; and
taken with the minus sign; K is the rest of the Laplacian
associated with the curvature of .. )

The lowest bound eigenstate of the operator H?) is
860y=d8,,/dp;, which corresponds to the eigenvalue A =0
[5,6,37—-40]. Indeed, if we differentiate Eq. (10) with respect
to p;, we will get
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The function §6y=d6,;,/dp; has no nodes; therefore it cor-
responds to the lowest eigenstate. The eigenvalues corre-
sponding to the excited states are all of order 1. This means
that the excited states, whose eigenvalues are all positive and
of order 1, are highly damped and are therefore not important
for our analysis of the instabilities [5,6,37—40].

The operators H L and €28, in Eq. (18) can be treated as
perturbations to the operator H g. Since the unperturbed op-
erator H % has no dependence on &;, we need to introduce the
orthogonal basis of the states corresponding to the surface
modes on .”;. As such a basis, we may choose the eigen-
functions of the operator S ;- Then the dangerous fluctuations
88, are linear combinations of the functions §6;;, where

56,= s S.p= 22
0= (&) dp.’ ib1=vid, (22)
and ¢, satisfy

jy_¢1>k(§i) di(E)dE= 8. (23)

Of course, for each .7 there is its own set of ¢;. We will
frequently omit the indices such as i and w, wherever it does
not lead to ambiguities, in order to simplify the notation.

Up to now we have ignored the reaction of the inhibitor
on the fluctuations of the activator. According to the general
qualitative theory, this reaction can be included into our
analysis by means of the perturbation theory [5,6]. The main
problem here is to correctly find the response of the inhibitor
to the dangerous fluctuations of the activator. The formal
solution of the problem is of no practical use since one has to
diagonalize a complicated operator, nor is the expansion in
the eigenfunctions since one has to consider the whole spec-
trum of the problem. A way to do this is to use the idea of
singular perturbation theory and separate 66 into the local-
ized (sharp) and the delocalized (smooth) parts (for a more
rigorous derivation see Appendix A):

50=456,,+ 56,,, . (24)
Far from .¥ Eq. (16) will become
iawées‘m: _(q’e)smgesm_(q;y)smén’ (25)

where the subscript s means that the derivatives are evalu-
ated at the smooth distributions, that is,

(q;)sm: qg(asm(-xL n.rm(x))’

(q;;),ym:qfq(gxm(x)’ nvm(x))' (26)

As follows from the general qualitative theory [5,6], for all
types of instabilities the condition aw<<1 is satisfied. For
this reason we may neglect the left-hand side in Eq. (25), and
obtain that

C. B. MURATOV AND V. V. OSIPOV 53

(@7)sm

60sm: - ’ .
(q G)sm K

27

Let us substitute Eq. (24) into Egs. (16) and (17). Using
Egs. (21) and (27), we can rewrite Eq. (16) around . and
Eq. (17) in the whole space as

(iaw+ €8+ Hy) 860,,= —q. 67, (28)

(q7)sm(Q9)sm

iw_A+(Q;7)srn_ (q!)
6/ sm

577: - Q,0505h .
(29)

Note that we neglected the term H ‘;5 6,,, in the left-hand side
of Eq. (28) since it does not contribute in the first order of
the perturbation theory. Also note that in writing Eq. (29) we
replaced the true distributions #(x) by the smooth distribu-
tions 6,,,(x). It is easy to see that this replacement gives
negligible difference in d7.

Let us solve Eq. (29) for 67 by means of the Green’s
function

S(x)=— f 04(x)G(x.x')80,(x )dx',  (30)

where G(x,x') satisfies

[io—A+C+V(x)]G(x,x")=8(x—x"), 31)
where
— _qlr;(ahsnh)Q,ﬁ(ehsnh)
C Q77( 0/1’7711) q:g( 0}1,77}1) s (32)
and
( ,)sm(Q’)xm
V) =| (@)= —ZIZ0M | ¢ (33)
(qo)sm

In view of Eq. (30), the right-hand side of Eq. (28) can be
regarded as an operator R acting on 66, :

RL50,1=000) [ @ix )G (ex) 80,0 %" (34)

Since the sharp fluctuation &6y, is the linear combination of
the functions 86,; defined in Eq. (22), the integral in Eq. (34)
can be easily calculated. Taking into account that d8,;,/dp;
are close to & functions [5,6], we may write

Ié[aatllz [Q( 63‘3 s 77s)
—0(0,1.75)]1g,(x) f/ G(x.&)pi(E)a*™ " &,
(35)
where &; denotes the point on .%; and the integration is over

.%;. The matrix elements of R can be calculated analogously.
The result of the calculation is
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wrikin=-s| [ e

X (E)d ™ End" T E (36)

where

043
B:—[Q(ev:‘wns)—Q(evl’??s)]fo q;,(e,%)de (37)

is a constant depending on A only. Note that in accordance
with Eq. (5) the value of B is positive.

When the distance between the different .; is much
greater than €, the overlap between the different §6;; is neg-
ligible, so the operator H i, is diagonal in the i indices. Then,
in the first order of the perturbation theory Egs. (28), (34),
and (36) reduce to

(iaw+ €2v,) 8, 8 =€Z [(i'I'|R|il)— 8, (il'|H}|il)],
(38)
where

zZ= jm 00 2d 39
=€) \ap ) 9 (39)

Note that the value of Z is of order 1 since the characteristic
length of the activator variation is €.

Equation (38) is the principal equation which determines
the stability of an arbitrary d-dimensional pattern in N sys-
tems. This equation was derived with an accuracy to €<<1
and €K, ,,<1, where K,,,, is the maximum curvature of a
given pattern.

If a pattern possesses certain symmetries, the operators
R and H ; are diagonal in the / indices. In this case the
operators in Eq. (38) can be easily diagonalized (see the
following sections). The main problem is to find the Green’s
function G(x,x"). Once this is done, we can obtain the “dis-
persion relation,” which relates w to the values of A, €, and
« for different types of fluctuations.

IV. STATIC ONE-DIMENSIONAL AUTOSOLITON IN TWO
AND THREE DIMENSIONS

Let us apply the procedure developed in the previous sec-
tion to the simplest pattern — a static one-dimensional auto-
soliton in two or three dimensions (Fig. 3). Since the AS is
localized, the distributions of the activator and the inhibitor
on its periphery go to the stable homogeneous state =6,
and 7= 7, , where 6, and 7, are determined by Eq. (6). In
this case, according to Egs. (5) and (32), the value of C>0
since for 6,< 6, the value of g( 6, ,7,)>0 [5,6].

For a one-dimensional (1D) AS the manifold .&” consists
of two parallel planes where the AS walls are localized. We
can choose the coordinate directions in such a way that these
planes are perpendicular to the z axis. Then the solution for
the AS will depend only on z.

Since the considered static 1D AS is symmetric with re-
spect to its center [5,6], we can assume that the positions of
its left and its right walls are z,=— %,/2 and z,=.%,/2,
respectively, where % is the distance between the walls.
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FIG. 3. Distributions of € and % in the form of a one-
dimensional AS. On the AS periphery 6 goes to 6, and 7 goes to
7, . Dashed lines indicate the regions where the AS walls are lo-
calized.

Note that the value of % itself can be used as a bifurcation
parameter instead of A, since there is a one-to-one corre-
spondence between them in the whole region of AS existence
[5,6]. For this reason, here and further we will use the AS
width % as the bifurcation parameter instead of A.

Since the .%7, are flat, the curvilinear coordinates p,,
coincide with z—z; and —(z—z,), respectively (the signs
are consistent with our definition of p; given in Sec. II), and
the coordinates &; coincide with the rest of the coordinates of
space. Of course, K=0.

According to our procedure, let us first look at the opera-
tor Si. Here 3‘1,2=——A§1'2 is the Laplacian, acting on the
local coordinates on .| ,. The eigenfunctions of this opera-
tor are just plane waves with the wave vector k along
712, whose eigenvalues are v, =k>.

If we substitute the eigenfunctions of § 12 into Eq. (36)
and use the fact that the system has translational invariance
in the ¢ directions, by integrating over the &;’s we will get

& p

<1,k|k|1,k'>:—BGk(§,§>5(k—k’), (40)

(1k|R|2,k")= —BGk< - —2~—2—) o(k—k"), (41)

where G,(z,z") is the Fourier transform of G(x,x') in &.
Because the AS is symmetric with respect to its center, the
values of the matrix elements satisfy
(Lk[R|1.k)=(2k|R|2.k) and (1k|R|2k)=(2.k[R|1k).

R
Thus the matrix elements of the operator R in this case can
be expressed in terms of the values of the Fourier-
transformed Green’s function at the particular points of the
Z axis.

Let us now turn to the operator H b. As was shown in the
general qualitative theory [5,6], the functions d ,,/dp , de-
cay exponentially at distances much larger than €. Because
of this, for £ ;> eln(e™!) the overlap of these functions can
be neglected. Following the notation of Refs. [5,6], we write
the diagonal elements of H}, as
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(Lk|HY 1LY =(2,k|H),

2,k"y=€"ZNgB(k—k"),
(42)

where A is of order €. The operator in the right-hand side of
Eq. (38) can be trivially diagonalized. Since the AS pos-
sesses central symmetry, the eigenstates of this operator are
the symmetric and the antisymmetric combinations of 56,
and 66,; . These states correspond to the symmetric and the
antisymmetric deformations of the AS walls. As a result,

introducing the functions
Ro(k,w):Gk - +Gk - . (43)

22 27 2

R 7 F F
R(k,w)=G, 55 TS TS (44)

from Eq. (38) we obtain the dispersion relation
iaw+ e*k*+Ng=—€BZ 'Ry (k,w). (45)

Here the subscript “0”” corresponds to the symmetric and the
subscript ““1”” corresponds to the antisymmetric mode of
fluctuations. The value of Ay can be calculated indirectly.
Since the AS possesses translational invariance in the z di-
rection, Eq. (45) should be identically satisfied for k=0 and
w=0 for the antisymmetric fluctuation. This immediately
means that

No=—€eBZ 'R,(0,0). (46)

Equations (43) and (44) define the functions Ry(k,w) and
R (k,w), which describe the inhibitor reaction on the dan-
gerous fluctuations of the activator. In general the potential
V(z) in Eq. (31) which determines the Green’s function is
some nontrivial function of z, so R ;(k,w) are some com-
plicated functions of % . In the case of the piecewise-linear
model one can calculate the values of Ry(k,w) and
R,(k,w) explicitly (see Appendix B). One can see that the
dispersion relations for the fluctuations obtained in this case
are identical to those found earlier by Ohta, Mimura, and
Kobayashi in Ref. [47], who used a different approach.

To calculate the critical values of A and the parameters of
the critical fluctuations in general, we need to know the de-
tailed form of the Green’s function. According to Eq. (31),
the Fourier-transformed Green’s function G (z,z') is gov-
erned by

2
-—~az—2+iw+k2+C+V(z) G(z.2)=68(z—z2").

(47)

As was said earlier, the potential in the operator in the left-
hand side of Eq. (47) is some complicated function of z.
However, the problem is greatly simplified for finding insta-
bilities, since, as was shown in the general qualitative theory
[5,6], most of the instabilities occur when .%,<1 (see also
the results below). This allows one to use the value of .% as
a small parameter and expand the functions R, (k,w) in
terms of it.

Considering all this, we are now able to construct the
perturbation expansion for the Green’s function, considering
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the potential V(z) in Eq. (47) as a perturbation. The unper-
turbed Green’s function satisfies

pe
- (—97+k2+iw+C Gz,z")=68(z—2"). (48)
The solution of Eq. (48) is well known:

_exp{—VCHE +iw|z—2'[}
2NCH+E*+iw '

To calculate the corrections to the Green’s function, we use
the formula

GO(z.z") (49)

+
G;(ﬂ)(Z,Z/): _ f V(z")GiO)(z,z")Gin* U(Z”,Z,)dZ”,
(50)

where Gi")(z,z’) is the nth correction.

Let us denote the contributions from G,((") to Ry ;(k,w) as
Rg)f’l)(k,w), respectively. Since for small values of & the
coefficients B, C, and Z only weakly depend on A, we may
replace them by their values at A=A, , where the AS size
becomes formally zero when €—0 [5,6]. Then the functions
RE,O)(k,cu) and R(lo)(k,a)) can be written as

1 P
ROk, w)= ————{1+exp(— L NC+k2+iw)},
0 k)= TR TR %
(51)
<z FEHCHE+iw
RO(k,0)= =" — —————+0(Z}). (52)

2 4

Note that RE)”) =0(£"), and because of the central symme-
try of the potential R\ =0 (£ *1).

Substituting these values of Ry ;(k,w) into Eq. (46), we
will obtain that the leading term of A is

€Z 'BZ,
No=———5—" (53)

Having calculated the value of A\, we may write the dis-
persion relation for the symmetric fluctuations

2 2JyCHK+iw
xX{1+exp(— ZNC+k*+iw)}

iaow+ 62](2:6321[

—R\V(k,w)} +0(£?). (54)
As was shown in the general qualitative theory

[5,6,39,40], when « is big enough, for %4,> ., the one-
dimensional AS becomes unstable with respect to the fluc-
tuation with Rew=0 and k=k.>1, corresponding to the
corrugation of the AS walls. Note that, according to Eq. (50),
for k.>1 the value of R(()”(k,w) which is of order ¥,
contains a small factor ok~ 2, so it can be neglected. Let us
calculate the values of .%,; and k.. Putting @=0 and ne-
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glecting C in comparison with k2 in Eq. (54), we will get a
transcendental equation, which can be solved for small val-
ues of .24 . The result is

ez\ 13 ez\ 13
= — Lo =2.64{ —| .
k. 0.71( B ) s Fe 264( B) (55)

Note that the dependences of %, and k. on € coincide with
those obtained in the qualitative theory for 4, <1 [5,6].

In the case a<<e€ there is an instability for £ > %, with
respect to the fluctuation describing the pulsations of the AS
with the frequency w=w, >1 and k=0 [5,6,41,42]. As be-
fore, the term Rgl)(k,w) contains the small factor o~ ! and
can be neglected. Solving the transcendental equation ob-
tained in this case, we have

aZ —2/3 173
wC:0.73(‘E—E) 5 ;%;,:0.96< 5) . (56)

Again, the calculated dependences of 4, and w,. on the ratio
a/ € coincide with those obtained in the qualitative theory
[5,6], and in the analytic studies of the piecewise-linear
model [25]. Also, comparing .%%4,.; and .%,,, one can see that
the pulsating instability occurs before the corrugation insta-
bility if a<<21€?.

When the size of the AS is greater than the critical size
determined by Eq. (55), the increment of the growing fluc-
tuations may be very small. Indeed, according to Eq. (54),
for £,> ., we obtain that the increment of the most dan-
gerous fluctuations is y=€B.%,/(2aZ).

Now let us turn to the antisymmetric fluctuations. Accord-
ing to Eq. (52), the first term in R;(k,w) which depends on
w and k is of order .4 3 As was mentioned earlier, the first
correction R{"(k,w) is of the order %7, so it can be ne-
glected. Then Eq. (45) for the antisymmetric fluctuations can
be written as

eBZ ' 77
iaw+ 62k2=T{\/C+k2+iw_ \/E}+0( %3)

(57)

According to the general qualitative theory [5,6], there are
two types of antisymmetric instabilities: wriggling of the AS
walls, and formation of a traveling AS. The first instability is
realized when Rew=0, k—0, and %4,>.%,,. The second is
realized when a<<1, k=0, and %,> %;. We may expand
the the right-hand side of Eq. (57) in powers of k and w and
obtain the expression

iaw+ 2 k’=eb L (K’ +iw), (58)

where we retained only the first nonvanishing terms. The
constant b is given by

B

b= Szcl/Z'

(59)

One can see from Eq. (58) that the instability Imw<<0 occurs
at k=0 for £ ;> %, where

[e3

v 1/2
e (EE) , (60)

or for Rew=0 and .£,>.%_.,, where

e\ 12
o2
sa=(5] (61)
Comparing these two formulas, one can see that a traveling
AS forms before the walls of the static AS become unstable
with respect to wriggling, when @< €%, This fact is also an
obvious consequence of the additional symmetry present in
Egs. (3) and (4) at a=¢€>.

Although for %4> %, the AS is unstable, the increment
of the most dangerous fluctuations may be extremely small.
Indeed, according to Eq. (57), for £.,<%, and
K< F <K%, we have

,2p\ 2 52
R i <1 for k== s 1
)/max a 8Z max 8 6_Z -

(62)

Comparison of the expressions in Egs. (55) and (61) for
the critical values of %, for symmetric and antisymmetric
fluctuations shows that for e<<1 the wriggling instability al-
ways emerges before the corrugation instability. Likewise,
according to Egs. (56) and (60), for sufficiently small ratios
a/ € the traveling AS forms before the pulsating one. Notice
that these general conclusions are in agreement with the ana-
Iytic investigation of AS in the piecewise-linear model
[47,25].

When the size of the AS becomes comparable with €, the
overlap between the eigenfunctions of the operator I;V% be-
comes significant, which leads to instability of the AS. As
was shown in the general qualitative theory [5,6], the insta-
bility of an AS with %~ € occurs with respect to symmetric
fluctuations. Since the asymptotic behavior of the sharp
solutions is exponential, an extra piece in Eq. (54) from
the operator 19‘; will have the form a exp(— %,/ D,
where /= eqj(6,3,7,) "% and a is some constant of order 1
[5,6,37-40]. Then we obtain that for a> € the instability
occurs with respect to the fluctuations with Rew=0 and

4]
—Ine™ !, (63)

—1/3
k=k =2*”3(6—Z-> < Loep=
c ’ s T~ ch 3

B

whereas for a<<e the instability is realized with respect to
the fluctuations with k=0 and

AR i
waCZZIB(?B‘ y L L=~

glnaez‘

/

(64)

Equations (63) and (64) were calculated with logarithmic
accuracy and coincide with those obtained in the qualitative
theory [5,6].

In one-dimensional systems with &> € the value of %), at
which the AS disappears will be slightly different from
#~.,, since the only possible value for k there is zero. Put-
ting k=0 in the dispersion relation we obtain that
%,=1Ine"" [5,6].

Up to now we have considered an AS whose width
#,<1. This is justified in two- or three-dimensional systems
since, according to Egs. (55) and (61), the AS becomes un-
stable when #;<<1. In one dimension, however, an AS re-
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mains stable up to the values of £ ~1, if a>e€. In this
situation, according to the general qualitative theory [5,6],
there is another effect causing the instability; namely, when
Z, is close to some %,;~ 1 at which the activator in the AS
center reaches the value of 6, such that g4(6},77) =0, the
solution in the form of an AS disappears. As a result, a local
breakdown occurs at the AS center, causing the AS to split,
so that eventually the whole system becomes filled with a
complex pattern [5,6]. This can also be seen from Eq. (45), if
we take into account that at the point z=0 where 6= 6, the
potential V(z) in Eq. (47) becomes singular. In the case
a=< e the values of %, and % corresponding to the insta-
bilities leading to formation of pulsating and traveling AS’s,
respectively, may be less than %4, so the AS cannot reach
the point where local breakdown occurs. There is also a pos-
sibility that the point A=A, where £,=_%) is preceded by
the point A=A _ where the homogeneous state of the system
becomes unstable [5,6]. In this case the periphery of the AS
becomes unstable. This can also be seen from Eq. (45) if we
take into account that, according to Eq. (47), for A>A the
value of C becomes negative and therefore the tails of the
Green’s function become oscillatory. When « gets larger, the
right-hand side of Eq. (45) always remains of order 1, so at
some critical values of a=¢€ the instability leading to the
formation of traveling and pulsating AS’s disappears.

V. HIGHER-DIMENSIONAL RADIALLY SYMMETRIC
AUTOSOLITONS

Let us now turn to higher-dimensional AS’s. First we con-
sider spherically symmetric AS’s in three dimensions. In this
case there is only one manifold .%” which is simply a sphere
of radius .7 . As a set of orthogonal curvilinear coordinates
we choose the usual spherical coordinates p, ¥, and ¢, ex-
cept p will be measured from the surface of the sphere rather
than from the origin, in order to be consistent with our initial
definition.

The operator S in the considered case is

P I | a‘ﬁa+1 &
§=-% 395 T S 997

S| sind 99 oY (65)

The eigenfunctions of the operator S are just spherical har-
monics ¢, =Y, (3, 90)/ 7, with the eigenvalues
vi=I(l+ 1)/(923. The factor 1/.%; in the eigenfunction en-
sures the proper normalization.

Now let us calculate the matrix elements. First of all,
since the system possesses spherical symmetry, the only non-
vanishing matrix elements of the operator H fg are the diago-
nal elements, which are all equal to each other. Due to the
same symmetry, the operator R is also diagonal, and its di-
agonal elements are independent of m. According to Eq.
(36), the diagonal matrix elements of R are

(Im|R|Im)=—BR(w), (66)

where

R(o)= [ [ G(m0.007,.9"07)
XYE(0, @)Y (8, @) R2do' do,  (67)
do is the element of solid angle, and the Green’s function is
written in terms of the spherical coordinates.
To calculate R/(w) let us note that
Rw)=922G (R, ), where
G/r,r')= j f G(r,0,¢;r', 9 ,¢")
XY 5 (0,0)Y (9", ¢")dodo' (68)

im

is the Green’s function satisfying

(1+1)
Tar?  rdr 2

J 4 24
¥ +C+iw+V(r)|G(r,r")

=8(r—r"). (69)

Equation (69) follows from Eq. (31) if we first rewrite it in
the spherical coordinates »,9, and ¢, multiply both sides by
YE(9,9)Y,, (3 ,¢'), and then integrate over do and
do', taking into account the Hermiticity of the angular part
of the Laplacian and the orthonormality of the spherical har-
monics.

Using the above mentioned properties, we can now write
Eq. (38) for the spherically symmetric AS of radius .7, in the
form

el(l+1)

2 Tho=—€eBZ'R(w), (70)

law+

where A\ is the contribution from H 39. Equation (70) is the
dispersion relation for a fluctuation characterized by the
number /.

It can be shown by direct calculation that to first order in
€/.72; the value of N\, is zero. This means that in order to
calculate N\ from its definition one should know the distri-
butions #(x) and 7(x) for the AS with greater accuracy than
that of Eq. (14). Also, the second order of the perturbation
theory has to be taken into account. However, these difficul-
ties can be avoided, if we use the fact that the system pos-
sesses translational invariance. Indeed, Eq. (67) should be
identically satisfied for /=1 and w=0, so we immediately
obtain that

2€? 1

As we will show below, the instability of a spherically
symmetric AS occurs at .%2,<<1. To find the function R;(w)
let us use the idea of the previous section and seek for the
Green’s function of Eq. (69), treating the potential V(r) as a

perturbation. The zeroth-order Green’s function is well
known:
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Ipin(kr' ) K pip(kr”) .
T : ’

Nial g (72)

11+1/2(K"”)K1+1/2(K”l)

GgO)(r/ ,ru)z
r'>r",

where k=+\C+iw; K, 5(z) and I, ;(z) are the modified
Bessel functions. The corrections to Ggo)(r',r”) are then
given by

GE”)(r’,r”)=~f V(r)GfO)(r',r)GE"*U(r,r”)rzdr.
0

(73)

As a result, from Eq. (72) we obtain that
R{O(@) =R pp(kZ)K s1p(k ), (14)
and, as can be seen from Eq. (73), RE")(w)E

TG (R P = O(F" ).

As before, we will use the values of B, C, and Z evalu-
ated at the point A=A, where .7%2,—0 as e—0. Expanding
the Bessel functions at .72,<<1, we may write Eq. (70) as

1
§“21+1)'
(75)

; 2 p—2 -1 4 1
iaw+e 72, “(I+2)(I—1)=€BZ "7,

Equation ' (75) describes the fluctuations in the case
|w|.722< 1. This is satisfied for the thresholds of the aperi-
odic instabilities. Simple calculation shows that an AS be-
comes unstable with respect to the aperiodic /=0 mode
when

A 173
R

%s<%b5(7

For .72,> .78, it becomes unstable with respect to the aperi-
odic fluctuations with />1 at

(77

3(1+2)(21+1)ez\ 7
2B :

Ty > T8 = (

One can see from this equation that the first instability point
corresponds to [=2:

30ez\ 13
%62 = B . (78)

Thus a spherically symmetric AS can be stable only if its
radius satisfies .76,<.%8,<.%8.,, where .7, and .78., are
given by Egs. (76) and (78), respectively.

The /=1 mode corresponds to the translation of the AS as
a whole. As in the case of the one-dimensional AS, for some
value of @<<1 the spherically symmetric AS becomes un-
stable with respect to the fluctuation, leading to the forma-
tion of a traveling AS. The instability with respect to the

=1 mode occurs for some .7,>.72; when w— 0. Expand-
ing the Bessel functions in the right-hand side of Eq. (70) for
small .22, and w, we get

2 P
iaw=€BZ'1.%§{in~(iw)2 ‘ ]

24\C

+ higher-order terms. (79)

According to this equation, the static AS transforms into a
traveling one when .72,>.%2, where

- 15az\'?
Tor= SeB | - (80)

Now let us study the instabilities with Rew # 0. Consider
an AS stable when a>-1; its radius is therefore of order
€. As follows from Eq. (70), in order for an instability to
occur, the frequency Rew at the threshold of the instability
should be big enough so that the argument of the Bessel
functions in Eq. (74) is of order 1. This means that
w~ .78, %~ €3 and therefore the critical values of « are of
order €2. Indeed, let us introduce the new variables

_ , AR B.7%?
a=ale, b=w| 7| ., P=—_ - (81)

Substituting these variables into Egs. (70), (71), and (74),
after some algebra we obtain the following transcendental
equation which has explicit dependence on a, p, and @
only:

_ _ 1 ~ :
iao+(1+2)(1=p 2’3:1)”3(5—Im{p”w”zﬁ}

XKy 1pipPet? \/l—} ) . (82)

We solved Eq. (82) numerically for /=0 and 2 in the
region of p where the AS is stable with respect to the aperi-
odic fluctuations. The resulting stability diagram is shown in
Fig. 4. The rescaled critical frequency as a function of @ for
[=0 is also presented in Fig. 5. From Fig. 4 it is clear that
when a gets smaller, the AS always loses stability with re-
spect to the /=0 pulsations first. The AS is always unstable
if a<a,=4.4€*. For a>6.7¢> the AS destabilizes with re-
spect to the aperiodic /=2 mode first, if its radius is in-
creased. All other instabilities, including the one leading to
the formation of a traveling AS, occur at smaller values of
a and are, therefore, secondary.

Let us now consider the case of the radially symmetric AS
in two and three dimensions. Because of the close analogy
with the case of the spherically symmetric AS, we will only
outline the derivations, focusing mainly on the obtained in-
stability criteria.

If r, ¢, and z are the cylindrical coordinates, then the

coordinate p= — (r—.%,), and the operator S is
. 1 P
TR (83)
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FIG. 4. Stability diagram for the spherically symmetric AS in
the rescaled variables & and p. The solid curves correspond to the
thresholds of the instabilities for /=0, /=1, and /=2. The bottom
and top horizontal lines correspond to the thresholds of the aperi-
odic instabilities for /=0 and /=2, respectively.

The eigenfunctions of this
(42 8,) " 2eiketime  with  the
k2+m?* 72> .

The nonvanishing matrix elements of the response opera-
tor in this case are

operator are @y, =
eigenvalues  vy,=

(mk|R|mk'y=—BR,,(k,w)8(k—k'") (84)

where the function R,,(k,w) can be expressed in terms of the
Green'’s function given by

0]
0.15
0.1
0.05
Fd L n 1 A
o °7 =
4 5 6 7 8 9 o

FIG. 5. The rescaled frequency @ vs @ at the threshold of the
[=0 instability of the spherically symmetric AS.

> 1d m?
r —-———————r+r—2+C+k2+iw+V(r) Gim(r,r")

=8(r—r'"), (85)

as R,,(k,w)=R,Gy, (B, 75).
The dispersion relation for the fluctuations with particular
values of k and m, obtained from Eq. (38), is

22
iaw+ ki +

+No=—€BZ 'R, (k,w). (86)

Tz

Because of the translational invariance, this equation should
be satisfied identically for k=0, w=0, and m= 1. This gives
us

&

No=— ﬁ—eBZ‘lRl(0,0). (87)

As before, for small values of .72, we will seek for the
function R,,(k,w) perturbatively. The zeroth-order Green’s
function here is
1, (kr")K,,(kr"),
L,(xr" I, (kr"),

rl <rU
G}c‘,’,z(r',r"):[ e (88)

where k=\C+k>+iw, and I,,(z) and K,,(z) are the modi-
fied Bessel functions. The corrections to the Green’s function
are given by

Gi’:n)(r' o)== J;) V(r)ch(zn)(r’,r)Gg;”(r,r")rdr.

(89)
From this we find that
ROk, w) =R, (k) K n(k.T2,), (90)

and that the corrections to R, (k,w) from G,((”,,f are
R (k,w)=R,G( Ry, 7)=0(F*"* ).

Let us study the stability of the radially symmetric AS in
two dimensions first. Putting k=0 in Eq. (86) with
R,,(k,w) given by Eq. (90), we obtain that for m>1 and

<1 the aperiodic instability occurs at .72,>.72.,,, where

©1n

2em(m+1)Z\ 53
— 5 -

According to this equation, when the value of .7, is in-
creased the AS becomes unstable with respect to the fluctua-
tion with m=2 when .78,>.72,.,, where

_ 12¢z\'?
Fea=|—5—| - (92)

When the value of .72 is decreased, at .72,<<.72,, the radi-
ally symmetric AS in two dimensions becomes unstable with
respect to aperiodic fluctuations with m = 0. According to Eq.
(86), for small values of .72, we have
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FIG. 6. Stability diagram for the radially symmetric AS in two
dimensions in the rescaled variables @ and p. The solid curves
correspond to the thresholds of the instabilities for m =0, m= 1, and
m=2. The top horizontal line corresponds to the thresholds of the
aperiodic instability for m=2. The bottom horizontal line shows
schematically the threshold of the aperiodic instability for m=0.

ez \ 13

L

where b, = —1n(1.47.%2, \/—C—). Since b only weakly depends

on %, , for 72,~0.1 we may put b;=2, and for .72,~0.01

we may put b;=4. Thus, a static radially symmetric AS in

two dimensions can be stable only if .72,<.7%2,<.%,, with
78, and .78,, given in Egs. (93) and (92), respectively.

When a gets sufficiently small, the radially symmetric AS
in two dimensions typically destabilizes with respect to the
m=0 pulsations first. If we introduce the variables of Eq.
(81) into Eq. (86), for small .78, we will obtain an equation
similar to Eq. (82), which depends on p, @, and @ only.
Solving this equation numerically for m=0 and 2 (the case

®

0.14

172
2

6 7 8 9 a

FIG. 7. The rescaled frequency @ vs a at the threshold of the
m =0 instability of the radially symmetric AS in two dimensions.

m=1 will be discussed below) we obtain the stability dia-
gram for the radially symmetric AS in two dimensions (Fig.
6). Figure 6 shows that when a<a,=6.1€2, the AS is un-
stable for all values of .%3,. When a>11€* the AS first
destabilizes with respect to aperiodic fluctuations with
m=2. The dependence of the rescaled critical frequency @
on «a for the m=0 pulsations is presented in Fig. 7. All
instabilities with m>2 occur at smaller values of «, so they
are secondary.

Now let us turn to the radially symmetric AS in three
dimensions. Solving the dispersion equation for small .72 for
m=0, we obtain that the AS becomes unstable when
IB <%, , where

) 2.25€z\'"
.Jab = B N (94)
or when .98,> .72, , where
) 7.5€z\ '
Z=|—5 , (95)
when
4.1€z\ ™1~
k=k.= 3 . (96)

Comparing Eq. (95) with (92), one can see that in contrast to
the radially symmetric AS in two dimensions, when .7, is
increased, the radially symmetric AS in three dimensions de-
stabilizes with respect to the m =0 mode first.

In the case m=1 an AS destabilizes with respect to fluc-
tuations with small £ at Rew=0. Expanding the Bessel func-
tions in the right-hand side of Eq. (86), we obtain the equa-
tion

iaw+ €k*=€eBZ b, 73 (kK*+iw), 07

where b, = —1n(1.14%3\/—é)/4. The value of b, weakly de-
pends on .78, , so for .%2,~0.1 we may put b,=0.5, and for
2,~0.01 we may put b,=1. It can be seen from Eq. (97)
that when > €? an AS becomes unstable when .72,>.72,; at
k—0, where

eZ 1/3
) (98)

78, cl™ ( B b2
Comparing Eq. (98) with Eq. (94) one can see that for
€<1073 we have .%2.,<.%3,, and, therefore, the cylindri-
cally symmetric AS is always unstable. However, note that
the increment of the fluctuations with m =1 and small k may
be extremely small.

Similarly, as follows from Eq. (97), when a~ €* the AS
becomes unstable for .78,>.72; at k=0, where

aZ 1/3
GBbz) ’

.%’T=( 99)
and transforms into the traveling AS. As we already noticed,
when 72, is not very small, the instability leading to the
formation of a traveling AS occurs at smaller values of «
than the instability with respect to the m=0 pulsations.
However, when .72,=<0.01 the coefficient b, in Eq. (99) be-
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comes such that the line p(«) in Fig. 6 corresponding to the
instability with m=1 crosses the curve corresponding to the
threshold of the m=0 pulsations when p<<12. In this situa-
tion a radially symmetric AS in two or three dimensions may
become unstable and transform into the traveling AS before
it destabilizes with respect to the m =0 pulsations. However,
this is a rather unrealistic situation since in order for an AS to
have a radius .72,=<0.01 and be unstable with respect to the
m=1 mode, one should have e<107° and a<10"'2,

VI. CONCLUSION

Thus, in the present paper we developed an asymptotic
theory of the instabilities of arbitrary d-dimensional static
patterns which may form in a wide class of reaction-
diffusion systems of the activator-inhibitor type. This theory
is based on the natural smallness of the parameter e=1/L,
where / and L are the characteristic length scales of the ac-
tivator @ and the inhibitor 7, respectively. In fact, as was
already mentioned, if the length scales / and L, as well as the
normalization of 6§ and 7, are chosen properly, the condition
€<1 is not only sufficient, but also necessary for the exist-
ence of AS and other large-amplitude patterns [5,6].

Within the presented theory we analyzed different types
of spontaneous transformations of the simplest static patterns
in two- and three-dimensional systems into more complex
static, pulsating, and traveling patterns. We showed that the
criteria corresponding to these transformations are universal
in the sense that they are practically independent of the spe-
cific nonlinearities of the system and are determined only by
the two parameters € and « and three numerical constants
B, C, and Z, which have all necessary information about the
nonlinearities. If the length scales and the normalization of
6 and 7 are chosen properly, the constants B, C, and Z are
necessarily of order 1, and the constant B can in principle be
small.

Let us summarize the results of our analysis.

According to the formulas of Sec. IV, when a> € a one-
dimensional AS in two and three dimensions (stripe) is less
stable than the AS in one dimension. As follows from Egs.
(55) and (61), for e<1 we have %, <.%,,. This means that
when the control parameter A is increased and the AS wid-
ens, the AS always destabilizes with respect to the wriggling
of its walls first. It is natural to expect that for
L < F,< %, a one-dimensional AS will deform into a
wriggled stripe that fills the whole volume of the system.
When A is further increased so that #,>.%,, each wall of
the pattern becomes unstable with respect to the fluctuations
with the characteristic wave vectors k.~ €~ . As a result of
the development of this instability, fingers will start to grow
from the walls of the pattern. Eventually, the volume of the
system will become filled with a labyrinthine pattern. The
instability will persist until the distance between the walls
and their curvature radii become of order €'. This phenom-
enon was observed recently in the experiments by Lee and
Swinney [31] and in the numerical simulations of a two-
dimensional reaction-diffusion system [33,23].

When A is decreased and the AS narrows, at £, <%, it
destabilizes with respect to the corrugation of its walls with
the wave vector k.~ e 3. As a result, granulation of the
static AS will occur and eventually the resulting granules

with the radius of order e will disappear.

According to Egs. (61) and (60), for a<e? we have
Sp<Z.,. This means that as .%, is increased, a one-
dimensional AS will always transform to a traveling stripe
first. Note that the condition << €? here is exact and does not
depend in any way on the nonlinearities of the system.

As follows from Egs. (56) and (60), there may be a rather
wide range of the parameters « and € for which the pulsation
instability emerges before the instability leading to the for-
mation of traveling AS’s as the width of the AS is increased
or the value of a is decreased. Indeed, the condition
L ,<Zy is satisfied when

a>ep,, (100)
where
B
Bw~m~ (101)

Note the huge numerical factor in the denominator of Eq.
(101). Because of it the instability with respect to pulsations
will emerge before the instability to traveling AS’s in the
majority of real systems. At the same time, as follows from
Egs. (56) and (61), the instability with respect to pulsations
is the first, i.e., £ ,<.%,,, if

a< eS/Zﬁ; 172 ) (1 02)

These two conditions can be satisfied at the same time only if

e>f,.

As a result of the instability with respect to pulsations a static
AS may collapse or transform into a stationary breathing
pattern (pulsating AS), if the parameters of the system are
finely adjusted [5,6]. However, as we see from our numerical
simulations, in most cases the walls of the AS go so far apart
that a local breakdown occurs at the AS center, and eventu-
ally the AS produces two one-dimensional AS’s traveling in
the opposite directions.

When the width of the AS is decreased, at «<<e® the AS
destabilizes with respect to pulsations and disappears, if
< %pa, Wwhere %, is given in Eq. (64). When the value
of « decreases, at o= a, we have %4, ,= %r. For smaller
values of « the AS is always unstable. According to Egs.
(60) and (64), the value of «, is given by

(103)

a,=e*(In e 12 (104)

The transformations and the evolution of the static spheri-
cally symmetric AS in three dimensions and static radially
symmetric AS in two dimensions are very similar. These
AS’s are stable only in relatively narrow range of their radii.
When «a is big enough, the AS is stable if . 72,<.72,<.7%2.,,
where .72, and .%,, are of order €'* and are given by Egs.
(76) and (78) for the spherically symmetric and by Egs. (94)
and (92) for the radially symmetric AS in two dimensions.
As the control parameter A is decreased, at .72,<<.72, the AS
will abruptly disappear. As A is increased and the AS radius
becomes greater than .72,.,, the AS loses stability with re-
spect to the radially nonsymmetric fluctuations with /=2
first. The growth of these fluctuations may lead to the split-
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FIG. 8. Formation of a labyrinthine pattern. Numerical solution of Egs. (3) and (4) with ¢=6>—6—% and Q=6+ 7—A with
€=0.05, «=0.1 and A= —0.3 at different times. The system size is 20X 20. At r=0 the homogeneous state of the system is excited in the
region 0.5X0.7. Distributions of the activator at times =0, 16.5, 30, 65, 100, 300.

ting of the AS into two, or to the growth of a pattern with
sophisticated geometry. This complex pattern may further get
more and more complicated as a result of the fingering in-
stability, if the distance between the pattern’s walls exceed a
value of order €'?. The process of splitting and complicating
will go on until the whole system becomes filled with a very
sophisticated labyrinthine pattern (Fig. 8). The pattern should
not necessarily be connected because of the possibility of
splitting. Thus, there is a remarkable phenomenon character-
istic of the considered class of nonlinear systems: as a result
of the instability of an AS localized in a small portion of an
extended system the whole system becomes filled with a com-
plicated pattern. These conclusions explain the effects of
splitting, self-replication, and formation of labyrinthine pat-
terns found recently in the experimental and numerical in-
vestigations of some two-dimensional reaction-diffusion sys-
tems [31,33,23].

Static cylindrically symmetric AS’s in three dimensions
can only be stable if é=1073. If this condition is satisfied,
the cylindrically symmetric AS will destabilize with respect
to wriggling (m=1 mode) when .22,>.72,,, where .72, is
given by Eq. (98), as its radius is increased. If the radius of
the AS is decreased, at .72,<<.72, , where .72, is given by Eq.
(94), the AS will destabilize with respect to the corrugation
of its walls [m=0 and k=k,., where k. is given by Eq.
(96)]. As a result, the AS will granulate and transform into a
number of spherically symmetric AS’s.

When the value of « is decreased, a stable radially sym-
metric AS in two dimensions and a spherically symmetric AS
in three dimensions lose their stability with respect to the

radially symmetric fluctuations oscillating with some charac-
teristic frequency (see Figs. 4—7). Only a radially symmetric
AS in two dimensions whose radius .72,=<0.01 can spontane-
ously transform to a traveling AS before it destabilizes with
respect to the m =0 pulsations. However, as we already men-
tioned, this situation is possible only for unrealistically small
values of « and e; therefore this bifurcation, which was re-
cently discussed in Ref. [24], is secondary in most real
reaction-diffusion systems. As a result of the instability with
respect to radially symmetric pulsations the AS may col-
lapse, or, if the parameters of the system are finely adjusted,
a stationary pulsating radially symmetric AS may form [5,6].
However, as we see from our numerical simulations, in most
cases the growth of the amplitude of the AS pulsations leads
to local breakdown in the AS center and the formation of a
traveling wave in the form of a ring with the radius mono-
tonically growing with time.

Static radially symmetric AS’s of any radius are always
unstable if @<4.4€? in three dimensions, or if <6.1€? in
two dimensions (in the case of extremely small € and « this
value may be greater; see the discussion above). In this situ-
ation only traveling waves and pulsating patterns will form
in the system. Note that these conclusions are totally inde-
pendent of the specific nonlinearities of the system.

In our analysis we considered only monostable systems.
However, the results obtained by us remain true in bistable
systems as well. In particular, it can be easily seen that a
static one-dimensional front connecting two stable homoge-
neous states is always unstable with respect to fluctuations
with the wave vector k~ e~ 173
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So we see that our results are universal and applicable to
a wide class of physical, chemical, and biological systems
which can be described by Egs. (1) and (2), if the nullcline of
Eq. (1) is N or inverted N (Fig. 1). In such N systems the
universality of the obtained results is related to both the form
of the nullcline and the smallness of the parameter €. At the
same time there are systems which are described by Egs. (1)
and (2), in which the nullcline of Eq. (1) is V or A. For
example, the biological morphogenesis system of Gierer and
Meinhardt [11], the models of axiomatic chemical reactions
(the Brusselator [1], and the Gray-Scott model [22]) all have
V or A nullclines. In such V systems at e<<1 spike patterns
of giant amplitude may form [5,6]. The properties of such
patterns essentially differ from those forming in the N sys-
tems we considered here. For this reason it would be incor-
rect to use the results of present paper to interpret the results
of the numerical simulations in V systems. However, the
simulations performed by Pearson in the two-dimensional
Gray-Scott model showed [22] that the effects of the granu-
lation of static one-dimensional AS’s, splitting, and self-
replication leading to the formation of complex patterns
which fill the whole space are seen in V systems as well.

APPENDIX A: THE EIGENVALUE PROBLEM
Let us consider the exact stability problem for a static
pattern. Equations (16) and (17) can be written in operator
form as

H,60=U,87, (A1)
H,57=U,86, (A2)
where
Hi=ico—eA+q), (A3)
Hy=io—A+0Q), (A4)
and
Ui=-q,. U,=—0j. (A5)
Substituting Eq. (A2) into Eq. (Al), we obtain
(H,—U,H,'U,)50=\56, (A6)

where A should be put to zero. Solving this eigenvalue prob-
lem and then requiring that A =0, we may obtain the value of
. In fact, this allows us to think of N as an infinitesimally
small quantity.

In the problem considered the operator U II:I 5 Lo », may be
treated as a perturbation to the operator H 1 [5,6]. We would
like to find the solution of Eq. (A6) corresponding to the
lowest eigenvalue. In view of the discussion in Sec. III, to
the zeroth order in € the eigenfunctions of the operator H 1
are linear combinations of the functions 50,(-?)= \/6/750,-,
where 86;, are defined in Eq. (22) and Z is defined in Eq.
(39) (the coefficient in front of §6;; ensures the proper nor-
malization), and their corresponding eigenvalues are of order
€. It can be easily seen that

(' U H; O, ~ e, (A7)
where the matrix element is calculated with the functions
o 95?) . However, one should be careful in calculating N since
the matrix element from the bound state 56}’ to the state of
the continuous spectrum of the operator H 1 with the wave
vector k~1 has the following estimate:
(k| U H;10,]il)~ e (A8)

So the second- and higher-order corrections of perturbation
theory given by the transitions from the bound states to the
long-wave continuous spectrum will be of the same order as
the first-order contribution from the diagonal element.

According to Eq. (A6) and the fact that the unperturbed
eigenvalues of the operator H 1 are of order €, the improved
function 86¢’ which contains the corrections of order Ve
can be written as

86\ ={1+H'U,H; "' U,+(H;'U,A;'0,)*

+.-180). (A9)
Of course, as it should in the perturbation theory, the opera-
tor H 1_1 actually projects out the 565?) components. If we
now substitute this function for 86 into Eq. (A6), multiply it
by 505?)* , and then integrate over the volume of the system,
to the first order in € we will arrive at the equation

GUVH D =GR =N6,0 80, (A10)

R=U,H;"0U,{1+H;'U,A;'U,+(H,'U,H;,'U,)?
+.- 1 (A11)

One should not confuse the matrix elements in Eq. (A10)
with those of Egs. (36) and (38), since they are calculated
with eigenfunctions which have a different normalization.
To the first order in €, we may replace the true distribu-
tions of the activator and the inhibitor in the operator R by
smooth distributions. According to Eq. (A9), the function
50,,,= 66}’ — 56\ has the characteristic length scale 1. If
we neglect the term aw in Eq. (A3), the operator fl;l re-
duces t0 qp(6,,,(x),7,,(x)) " '. Then the definition of the
operator R in Eq. (A11), together with the above mentioned
property of the operator H 1 » means that in the calculation of
the inhibitor response one should consider the fluctuations
o7n and 86, to be related by Eq. (25). With all these ap-
proximations, Eq. (A10) is equivalent to Eq. (38).

APPENDIX B: PIECEWISE-LINEAR MODEL
It seems that the only model in which it is possible to find
the exact Green’s function of Eq. (31) is the well-known
piecewise-linear model of a reaction-diffusion system, which
is described by the equations [13]

6
a-é;:eer~ 0—n+H(6—A), (B1)



53 GENERAL THEORY OF INSTABILITIES FOR PATTERNS . .. 3115

DN\t 0y
o n YN,

(B2)
where H(x) is the Heaviside function.

The homogeneous state of this system is 6,=0, 7,=0. It
can be easily verified that the values of the parameters de-
scribing the sharp distribution of the activator are 6,;=A —
1, 0,=A, 03=A+3 and n,=3—A [13,16—18]. In view of
Egs. (B1), (B2), (37), and (32), we obtain that in this model
B=1 and C=1+y.

In order to find Z we need to know the sharp distribution.
According to Eq. (10), for this model

1 1
A— =+ zexp(p/e€), p<<0

2 2

1
A+ =——exp(—pl/e), p>0.

2 2

From Egs. (B3) and (39) we obtain that Z=1/4. Note that
B, C, and Z are just constants independent of A.

Having calculated the constants B, C, and Z, we can
easily find all instability points. Let us consider the one-
dimensional AS, for example. According to Eq. (55), for
a> € the AS becomes unstable with respect to symmetric
fluctuations with

k,=1.13e" " at Z.=1.66€", (B4)
whereas, according to Eq. (56), in the case a<<e it destabi-

lizes with respect to fluctuations with

~213 o\ 13
w,.= 1.84( —) at ,‘/;’w=0.60( —) (B5)
€ €
Equation (B5) improves the accuracy of the results obtained
in Ref. [25].

Similarly, from Eq. (59) one concludes that in this system
b=1/(21+ 7). According to Eq. (61), in the case a>¢€ a
one-dimensional AS becomes unstable with respect to anti-
symmetric fluctuations with k—0 at

L= Lo=(1+y)"2e)"7, (B6)
what agrees with the result of Ref. [47]. In the case a<<e,
according to Eq. (60), a static AS spontaneously transforms
into a traveling AS when

2a\ 12
F>Fr=(1+ y)”“(T) . (B7)
This result coincides with the one obtained in Ref. [25].

When % becomes comparable with €, an AS becomes
unstable with respect to symmetric fluctuations. According to
Eq. (63), for a> € the instability occurs at %,<.%), with
respect to fluctuations with k=k_., where

4e

k.=126€" 13, Zy=7In el (B8)

and, for a<<e, according to Eq. (64), at %,<.%,, with re-
spect to the fluctuations with w= w,, where

o\ 23 ) e
w,=2|— . Ppo=—=In a€?, (B9)

€ 3
since in this case [=e. in one dimension
%,=€lne .

As we noted in Sec. IV, there is a one-to-one correspon-
dence between the AS width % and the control parameter
A. In this system this correspondence is given by

Similarly,

— YNI+y

_rte B10
o 2(l+y) (B10)
where y/2(1+ y)<A<3. Thus, knowing the critical values
of %, we can easily calculate the values of A at which the
instabilities occur.

Finally, the value of B,, which appears in Eq. (101) and
determines the region where the AS becomes unstable with
respect to pulsations before it transforms into a traveling AS,
for this model is

B,=62X1073(1+y) 32 (B11)
This formula also improves the accuracy of the results ob-
tained earlier in Ref. [25].

Because of the singular character of the nonlinearity, the
potential defined in Eq. (33) is identically zero, so the dis-
persion relation for the one-dimensional AS of an arbitrary
size in this model becomes

2e
VIi+y+ki+io

X{lie*‘/x\’l+‘y+k2+iw}’ (B12)

iaw+ 2 k*+Ng=—

where the plus sign goes with symmetric fluctuations,
whereas the minus sign goes with the antisymmetric ones.
According to Eq. (46),

2€

_\/]+y

One can see that Eq. (B12) coincides with Eq. (5.4b) of Ref.
[47] obtained by a different method.

As in the case of one-dimensional AS’s, the unperturbed
Green’s functions from Egs. (72) and (88) for spherically and
cylindrically symmetric AS’s, respectively, are the exact
Green’s functions. For this reason the exact dispersion rela-
tions for radially symmetric AS’s in this model are given by
Egs. (70) and (86) with the functions R,(w) and R,,(k,w)
given by Egs. (74) and (90), respectively. It is easy to see
that the dispersion relations obtained in this fashion coincide
with those obtained in Ref. [47] as well.

{1—e 7sV1¥7)

No= (B13)
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FIG. 8. Formation of a labyrinthine pattern. Numerical solution of Eqgs. (3) and (4) with ¢=6"—6—% and Q=6+ np—A with
€=0.05, @=0.1 and A= —0.3 at different times. The system size is 20X 20. At =0 the homogeneous state of the system is excited in the
region 0.5 0.7. Distributions of the activator at times =0, 16.5, 30, 65, 100, 300.



